Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G418-G430, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351393

RESUMO

Precision-cut liver slices (PCLSs) provide a novel model for studies of alcoholic liver disease (ALD). This is relevant, as in vivo ethanol exposure does not appear to generate significant liver damage in ethanol-fed mice, except in the National Institute on Alcohol Abuse and Alcoholism binge model of ALD. Previous studies have shown that the two metabolites of ethanol consumption, malondialdhyde (MDA) and acetaldehyde (AA), combine to form MDA-AA (MAA) adducts, which have been correlated with the development and progression of ALD. In this study, murine PCLSs were incubated with ethanol and examined for the production of MAA adducts. PCLSs were homogenized, and homogenates were injected into C57BL/6 mice. PCLSs from control-, pair-, and ethanol-fed animals served as targets in in situ cytotoxic assays using primed T cells from mice hyperimmunized with control or ethanol-exposed PCLS homogenates. A CD45.1/CD45.2 passive-transfer model was used to determine whether T cells from the spleens of mice hyperimmunized with PCLS ethanol-exposed homogenates trafficked to the liver. PCLSs incubated with ethanol generated MAA-modified proteins in situ. Cytotoxic (CD8+) T cells from immunized mice killed naïve PCLSs from control- and pair-fed mice in vitro, a response that was blunted in PCLSs from ethanol-fed mice. Furthermore, CD45.1 CD8+ T cells from hyperimmunized mice trafficked to the liver but did not initiate liver damage. This study demonstrates that exposure to liver tissue damaged by ethanol mediates robust immune responses to well-characterized alcohol metabolites and native liver proteins in vitro. Moreover, although these proinflammatory T cells traffic to the liver, these responses appear to be dampened in vivo by locally acting pathways. NEW & NOTEWORTHY This study shows that the metabolites of ethanol and lipid breakdown produce malondialdehyde-acetaldehyde adducts in the precision-cut liver slice model system. Additionally, precision-cut liver slices exposed to ethanol and harboring malondialdehyde-acetaldehyde adducts generate liver-specific antibody and T cell responses in the spleens of naïve mice that could traffic to the liver.


Assuntos
Acetaldeído/imunologia , Autoimunidade , Fígado Gorduroso Alcoólico/imunologia , Hepatopatias Alcoólicas/imunologia , Fígado/imunologia , Malondialdeído/imunologia , Linfócitos T Citotóxicos/imunologia , Acetaldeído/metabolismo , Transferência Adotiva , Animais , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Fígado Gorduroso Alcoólico/metabolismo , Feminino , Humanos , Técnicas In Vitro , Interleucina-6/imunologia , Interleucina-6/metabolismo , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Ativação Linfocitária , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Baço/imunologia , Baço/metabolismo , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/transplante
2.
Rheumatology (Oxford) ; 56(10): 1794-1803, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957552

RESUMO

Objective: To characterize the expression of malondialdehdye-acetaldehyde (MAA) adducts and anti-MAA antibody in articular tissues and serum of patients with RA. Methods: Paired sera and SF were examined from 29 RA and 13 OA patients. Anti-MAA antibody, RF, ACPA and total immunoglobulin were quantified. SF-serum measures were compared within and between disease groups. The presence and co-localization of MAA, citrulline and select leukocyte antigens in RA and OA synovial tissues were examined using immunohistochemistry. Results: Circulating and SF anti-MAA antibody concentrations were higher in RA vs OA by 1.5- to 5-fold. IgG (P < 0.001), IgM (P = 0.006) and IgA (P = 0.036) anti-MAA antibodies were higher in paired RA SF than serum, differences not observed for total immunoglobulin, RF or ACPA. In RA synovial tissues, co-localization of MAA with citrulline and CD19+ or CD27+ B cells was demonstrated and was much higher in magnitude than MAA or citrulline co-localization with T cells, monocytes, macrophages or dendritic cells (P < 0.01). Conclusion: Anti-MAA antibodies are present in higher concentrations in the RA joint compared with sera, a finding not observed for other disease-related autoantibodies. Co-localization of MAA and citrulline with mature B cells, coupled with the local enrichment of anti-MAA immune responses, implicates MAA-adduct formation in local autoantibody production.


Assuntos
Acetaldeído/imunologia , Artrite Reumatoide/imunologia , Autoanticorpos/análise , Articulações/imunologia , Malondialdeído/imunologia , Idoso , Artrite Reumatoide/sangue , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Osteoartrite/sangue , Osteoartrite/imunologia , Fator Reumatoide/sangue , Líquido Sinovial/imunologia
3.
Curr Mol Pharmacol ; 10(3): 249-254, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26278387

RESUMO

INTRODUCTION: Ethanol metabolism in the liver results in oxidative stress, altered cytokine production and fat accumulation in the liver. Thus, it is thought that the accumulation of benign fat into the liver in conjunction with a second hit leads to liver failure. However, we have recently developed the use of precision-cut liver slices (PCLSs) as an in vitro culture model in which to investigate the pathophysiology of alcohol-induced liver injury. In this review, these studies will be discussed and newer data presented. METHODS: Original investigations into the use of PCLS were obtained from chow fed rats (200-300g). PCLSs were cultured 24-96h in media, 25 mM ethanol, or 25 mM ethanol and 0.5 mM 4- methylpyrazole (4-MP). PCLSs were examined for at different times and evaluated for glutathione (GSH) levels, extent of lipid peroxidation (TBARS assay), cytokine production (ELISA and RT-PCR) and myofibroblast activation. Age-matched rats were fed high fat diets for 13 months, PCLSs were prepared, and evaluated as outlined above. In recently, human and mouse PCLSs were cut, equilibrated, and evaluated using the methods outlined as above. RESULTS: In these studies, it was shown that the PCLSs from rats, mice and human livers retained excellent viability over a 96 hour period of incubation. During this time period, alcohol dehydrogenase, aldehyde dehydrogenase, and cytochrome P4502E1 levels were viable. After 24 hours of ethanol exposure, fatty livers and fibrogenic responses developed and could be prevented/reversed with the 4-MP. In a separate study using overly obese rats, ethanol metabolism was decreased in PCLSs as compared to age-matched controls (AMC). However, higher levels of triglycerides and lipid peroxidation were found in PCLSs from obese rats compared to AMC. Also, increased concentrations of the proinflammatory cytokines (TNF-α and IL-6) were found in the culture supernatants. In contrast, decreased levels of reduced glutathione (GSH) and heme oxygenase I (HO-1) levels were detected. CONCLUSION: Within 24h of incubation, ethanol metabolism by PCLSs initiates fat accumulation in the liver at which point there is an activation of myofibroblasts. Thus, fatty liver is the first response to ethanol and sensitizes the liver to other products of oxidative stress that result in inflammation and the start of liver failure ending in cirrhosis. Thus, from these studies it appears that PCLSs can be utilized to determine the mechanisms(s) by which ethanol exposure leads to the development and/or progression of alcoholic liver disease (ALD).


Assuntos
Fígado Gorduroso/metabolismo , Cirrose Hepática/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Animais , Fígado Gorduroso/patologia , Humanos , Técnicas In Vitro , Fígado/patologia , Cirrose Hepática/patologia , Estresse Oxidativo , Transdução de Sinais
4.
Hepatology ; 60(1): 146-57, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24492981

RESUMO

UNLABELLED: Aldehyde dehydrogenase 2 (ALDH2) is the major enzyme that metabolizes acetaldehyde produced from alcohol metabolism. Approximately 40-50% of East Asians carry an inactive ALDH2 gene and exhibit acetaldehyde accumulation after alcohol consumption. However, the role of ALDH2 deficiency in the pathogenesis of alcoholic liver injury remains obscure. In the present study, wild-type and ALDH2(-/-) mice were subjected to ethanol feeding and/or carbon tetrachloride (CCl4 ) treatment, and liver injury was assessed. Compared with wild-type mice, ethanol-fed ALDH2(-/-) mice had higher levels of malondialdehyde-acetaldehyde (MAA) adduct and greater hepatic inflammation, with higher hepatic interleukin (IL)-6 expression but surprisingly lower levels of steatosis and serum alanine aminotransferase (ALT). Higher IL-6 levels were also detected in ethanol-treated precision-cut liver slices from ALDH2(-/-) mice and in Kupffer cells isolated from ethanol-fed ALDH2(-/-) mice than those levels in wild-type mice. In vitro incubation with MAA enhanced the lipopolysaccharide (LPS)-mediated stimulation of IL-6 production in Kupffer cells. In agreement with these findings, hepatic activation of the major IL-6 downstream signaling molecule signal transducer and activator of transcription 3 (STAT3) was higher in ethanol-fed ALDH2(-/-) mice than in wild-type mice. An additional deletion of hepatic STAT3 increased steatosis and hepatocellular damage in ALDH2(-/-) mice. Finally, ethanol-fed ALDH2(-/-) mice were more prone to CCl4 -induced liver inflammation and fibrosis than ethanol-fed wild-type mice. CONCLUSION: ALDH2(-/-) mice are resistant to ethanol-induced steatosis but prone to inflammation and fibrosis by way of MAA-mediated paracrine activation of IL-6 in Kupffer cells. These findings suggest that alcohol, by way of acetaldehyde and its associated adducts, stimulates hepatic inflammation and fibrosis independent from causing hepatocyte death, and that ALDH2-deficient individuals may be resistant to steatosis and blood ALT elevation, but are prone to liver inflammation and fibrosis following alcohol consumption.


Assuntos
Aldeído Desidrogenase/genética , Fígado Gorduroso Alcoólico/enzimologia , Hepatite/enzimologia , Cirrose Hepática/enzimologia , Acetaldeído/metabolismo , Aldeído Desidrogenase/sangue , Aldeído Desidrogenase/deficiência , Família Aldeído Desidrogenase 1 , Aldeído-Desidrogenase Mitocondrial , Animais , Intoxicação por Tetracloreto de Carbono/enzimologia , Intoxicação por Tetracloreto de Carbono/genética , Depressores do Sistema Nervoso Central/farmacocinética , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Citocromo P-450 CYP2E1/metabolismo , Etanol/farmacocinética , Fígado Gorduroso Alcoólico/genética , Feminino , Hepatite/genética , Isoenzimas/metabolismo , Células de Kupffer/enzimologia , Cirrose Hepática/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Retinal Desidrogenase/metabolismo , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA